A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors
نویسندگان
چکیده
Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.
منابع مشابه
Design and Implementation of Real-Time Software Radio for Anti-Interference GPS/WAAS Sensors
Adaptive antenna array processing is widely known to provide significant anti-interference capabilities within a Global Navigation Satellite Systems (GNSS) receiver. A main challenge in the quest for such receiver architecture has always been the computational/processing requirements. Even more demanding would be to try and incorporate the flexibility of the Software-Defined Radio (SDR) design ...
متن کاملReal-Time Interference Detection in Tracking Loop of GPS Receiver
Global Positioning System (GPS) spoofing could pose a major threat for GPS navigation ‎systems, so the GPS users have to gain a better understanding of the broader implications of ‎GPS.‎ In this paper, a plenary anti-spoofing approach based on correlation is proposed to distinguish spoofing effects. The suggested ‎method can be easily implemented in tracking loop of GPS receiver...
متن کاملAn SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU
Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-ba...
متن کاملSpoofing Mitigation of GPS Receiver using Least Mean Squares-Based Adaptive Filter
The Global Positioning System (GPS) signals are very weak signal over wireless channels, so they are vulnerable to in-band interferences. Therefore, even a low-power interference can easily spoof GPS receivers. Among the variety of GPS signal interference, spoofing is considered as the most dangerous intentional interference. The spoofing effects can mitigate with an appropriate strategy in the...
متن کاملA Software-Defined GPS and Galileo Receiver: Single-Frequency Approach
We discuss GPS receiver architectures based on software defined radio techniques. The reason for doing this is to obtain a reconfigurable receiver with a wide range of applications. There is a need for a unified platform that will allow receiver development and testing for various applications; this speeds the design process and reduces the costs. With the current functionality of the GPS const...
متن کامل